
YEAH Assignment 3
Recursion!

Some Logistics
● This assignment is broken down into 4 parts. We think they’re a little

more involved than your previous assignments, so be sure to start early!

Some Logistics
● This assignment is broken down into 4 parts. We think they’re a little

more involved than your previous assignments, so be sure to start early!
● Pair programming is allowed on this assignment!

Some Logistics
● This assignment is broken down into 4 parts. We think they’re a little

more involved than your previous assignments, so be sure to start early!
● Pair programming is allowed on this assignment!

○ Be aware that you should be working together on all parts of this assignment. If you don’t
implement parts of this assignment, you’ll be at a significant disadvantage on the exams!

Some Logistics
● This assignment is broken down into 4 parts. We think they’re a little

more involved than your previous assignments, so be sure to start early!
● Pair programming is allowed on this assignment!

○ Be aware that you should be working together on all parts of this assignment. If you don’t
implement parts of this assignment, you’ll be at a significant disadvantage on the exams!

● Small point: if you’re on Windows and you’re getting build errors right off
the bat, you’ll need to redownload the starter code!

Let’s begin!

Part 1: The Sierpinski Triangle
● Remember our beautiful Sierpinski Carpet?

Part 1: The Sierpinski Triangle
● Remember our beautiful Sierpinski Carpet?

Part 1: The Sierpinski Triangle
● Remember our beautiful Sierpinski Carpet?

Hello! It’s
me~~~

Part 1: The Sierpinski Triangle
● Remember our beautiful Sierpinski Carpet?
● We are beginning A3 with another fascinating discovery of Waclaw

Sierpinski

Part 1: The Sierpinski Triangle
● Remember our beautiful Sierpinski Carpet?
● We are beginning A3 with another fascinating discovery of Waclaw

Sierpinski

Waclaw Sierpinski,
trusted distributor
of CS 106B
material

Part 1: The Sierpinski Triangle
● Remember our beautiful Sierpinski Carpet?
● We are beginning A3 with another fascinating discovery of Waclaw

Sierpinski
“I dedicate these
shapes to Keith
Schwarz” -
Sierpinski, probably

Waclaw Sierpinski,
trusted distributor
of CS 106B
material

Part 1: The Sierpinski Triangle

Part 1: The Sierpinski Triangle

Part 1: The Sierpinski Triangle

Part 1: The Sierpinski Triangle

Part 1: The Sierpinski Triangle
● You are writing a program that draws n-order Sierpinski Triangles

Part 1: The Sierpinski Triangle
● You are writing a program that draws n-order Sierpinski Triangles
● The Sierpinski triangle is defined recursively, meaning:

○ An order-0 Sierpinski triangle is a plain filled triangle.
○ An order-n Sierpinski triangle, where n > 0, consists of three Sierpinski triangles of order n – 1, each half

as large as the main triangle, arranged so that they meet corner-to-corner.

Part 1: The Sierpinski Triangle
● You are responsible for handling two functions
● The first function draws a black triangle on the canvas given the 3 vertices

Part 1: The Sierpinski Triangle
● You are responsible for handling two functions
● The first function draws a black triangle on the canvas given the 3 vertices

I’m already implemented for you :)

Part 1: The Sierpinski Triangle
● You are responsible for handling two functions
● The first function draws a black triangle on the canvas given the 3 vertices
● The second function is the recursive function you need to implement

Part 1: The Sierpinski Triangle
● A few implementation thoughts:

○ If order is negative you should throw an error!

Part 1: The Sierpinski Triangle
● A few implementation thoughts:

○ If the order is negative you should throw an error!
○ For any given recursive case, how many calls to drawSierpinskiTriangle() should you be

making? At what locations?

Part 1: The Sierpinski Triangle
● A few implementation thoughts:

○ If the order is negative you should throw an error!
○ For any given recursive case, how many calls to drawSierpinskiTriangle() should you be

making? At what locations?
○ An order-0 Sierpinski triangle is a plain filled triangle.

Part 1: The Sierpinski Triangle
● A few implementation thoughts:

○ If the order is negative you should throw an error!
○ For any given recursive case, how many calls to drawSierpinskiTriangle() should you be

making? At what locations?
○ An order-0 Sierpinski triangle is a plain filled triangle.
○ An order-n Sierpinski triangle, where n > 0, consists of three Sierpinski triangles of order n

– 1, each half as large as the main triangle, arranged so that they meet corner-to-corner

Part 1: The Sierpinski Triangle
● A few implementation thoughts:

○ If the order is negative you should throw an error!
○ For any given recursive case, how many calls to drawSierpinskiTriangle() should you be

making? At what locations?
○ An order-0 Sierpinski triangle is a plain filled triangle.
○ An order-n Sierpinski triangle, where n > 0, consists of three Sierpinski triangles of order n

– 1, each half as large as the main triangle, arranged so that they meet corner-to-corner
○ Highly recommend drawing this one out and planning exactly where your points are

going to be before coding. Even if you understand this problem, it’s still easy to make
math errors (trust me! - Trip, who gets this wrong every time he tries it)

Questions about Part 1?

Part 2: Human Pyramids
● We will now use recursion to examine why life is just not fair...

Part 2: Human Pyramids
● We will now use recursion to examine why life is JUST not fair…
● Have you ever made a human pyramid with your friends, and you were

placed at the bottom center?

Part 2: Human Pyramids
● We will now use recursion to examine why life is JUST not fair…
● Have you ever made a human pyramid with your friends, and you were

placed at the bottom center?
● ...

Part 2: Human Pyramids
● We will now use recursion to examine why life is JUST not fair…
● Have you ever made a human pyramid with your friends, and you were

placed at the bottom center?
● …
● OUCH!

Part 2: Human Pyramids
● Here’s a human pyramid:

Part 2: Human Pyramids
● Here’s a human pyramid:

Part 2: Human Pyramids
● Here’s a human pyramid:

Why are
we still
here?

Part 2: Human Pyramids
● Here’s a human pyramid:

Just to
SUFFER!

Part 2: Human Pyramids
● Here’s a human pyramid:
● Let’s quantify their suffering

Just to
SUFFER!

Part 2: Human Pyramids
● Problem set-up

○ Each person supports half the body weight of
each of the people immediately above them, plus
half of the weight that each of those people are
supporting.

○ Each person weighs 160 pounds.

Part 2: Human Pyramids
● Let’s try a few examples!

Part 2: Human Pyramids
● How much weight is A carrying?

Part 2: Human Pyramids
● How much weight is A carrying?

○ 0 lbs; no calculation needed, there are no one
above them A.

Part 2: Human Pyramids
● How much weight is A carrying?

○ 0 lbs; no calculation needed, there are no one
above them A.

○ This problem almost… trivial ;)

Part 2: Human Pyramids
● How much weight is D carrying?

Part 2: Human Pyramids
● How much weight is D carrying?

○ B is above D, so D carries half of B’s weight.

Part 2: Human Pyramids
● How much weight is D carrying?

○ B is above D, so D carries half of B’s weight.
■ That is 80 lbs.

○ D also carries half of the weight B is carrying.

Part 2: Human Pyramids
● How much weight is D carrying?

○ B is above D, so D carries half of B’s weight.
■ That is 80 lbs.

○ D also carries half of the weight B is carrying.
■ How much weight is B carrying?

Part 2: Human Pyramids
● How much weight is D carrying?

○ B is above D, so D carries half of B’s weight.
■ That is 80 lbs.

○ D also carries half of the weight B is carrying.
■ How much weight is B carrying?

● A is above B, so B carries half of A’s
weight.

Part 2: Human Pyramids
● How much weight is D carrying?

○ B is above D, so D carries half of B’s weight.
■ That is 80 lbs.

○ D also carries half of the weight B is carrying.
■ How much weight is B carrying?

● A is above B, so B carries half of A’s
weight.

○ That is 80 lbs. And half of that is
40 lbs.

Part 2: Human Pyramids
● How much weight is D carrying?

○ B is above D, so D carries half of B’s weight.
■ That is 80 lbs.

○ D also carries half of the weight B is carrying.
■ How much weight is B carrying?

● A is above B, so B carries half of A’s
weight.

○ That is 80 lbs. And half of that is
40 lbs.

○ In total, D is carrying 120 lbs.

Part 2: Human Pyramids
● How much weight is D carrying?

○ B is above D, so D carries half of B’s weight.
■ That is 80 lbs.

○ D also carries half of the weight B is carrying.
■ How much weight is B carrying?

● A is above B, so B carries half of A’s
weight.

○ That is 80 lbs. And half of that is
40 lbs.

○ In total, D is carrying 120 lbs.

Part 2: Human Pyramids
● How much weight is D carrying?

○ B is above D, so D carries half of B’s weight.
■ That is 80 lbs.

○ D also carries half of the weight B is carrying.
■ How much weight is B carrying?

● A is above B, so B carries half of A’s
weight.

○ That is 80 lbs. And half of that is
40 lbs.

○ In total, D is carrying 120 lbs.

Part 2: Human Pyramids
● How much weight is E carrying?

Part 2: Human Pyramids
● How much weight is E carrying?

○ To save some work, we know from the previous
example that B yields 80 lbs (half of B’s weight) +
40 lbs (half of the weight B is carrying) = 120 lbs.

Part 2: Human Pyramids
● How much weight is E carrying?

○ To save some work, we know from the previous
example that B yields 80 lbs (half of B’s weight) +
40 lbs (half of the weight B is carrying) = 120 lbs.

○ C is above E, so E carries half of C’s weight.

Part 2: Human Pyramids
● How much weight is E carrying?

○ To save some work, we know from the previous
example that B yields 80 lbs (half of B’s weight) +
40 lbs (half of the weight B is carrying) = 120 lbs.

○ C is above E, so E carries half of C’s weight.
■ That is 80 lbs.

Part 2: Human Pyramids
● How much weight is E carrying?

○ To save some work, we know from the previous
example that B yields 80 lbs (half of B’s weight) +
40 lbs (half of the weight B is carrying) = 120 lbs.

○ C is above E, so E carries half of C’s weight.
■ That is 80 lbs.

○ E also carries half of the weight C is carrying.

Part 2: Human Pyramids
● How much weight is E carrying?

○ To save some work, we know from the previous
example that B yields 80 lbs (half of B’s weight) +
40 lbs (half of the weight B is carrying) = 120 lbs.

○ C is above E, so E carries half of C’s weight.
■ That is 80 lbs.

○ E also carries half of the weight C is carrying.
■ How much weight is C carrying?

Part 2: Human Pyramids
● How much weight is E carrying?

○ To save some work, we know from the previous
example that B yields 80 lbs (half of B’s weight) +
40 lbs (half of the weight B is carrying) = 120 lbs.

○ C is above E, so E carries half of C’s weight.
■ That is 80 lbs.

○ E also carries half of the weight C is carrying.
■ How much weight is C carrying?

● A is above C, so C carries half of A’s
weight.

Part 2: Human Pyramids
● How much weight is E carrying?

○ To save some work, we know from the previous
example that B yields 80 lbs (half of B’s weight) +
40 lbs (half of the weight B is carrying) = 120 lbs.

○ C is above E, so E carries half of C’s weight.
■ That is 80 lbs.

○ E also carries half of the weight C is carrying.
■ How much weight is C carrying?

● A is above C, so C carries half of A’s
weight.

○ That is 80 lbs. And half of that is
40 lbs.

Part 2: Human Pyramids
● How much weight is E carrying?

○ To save some work, we know from the previous
example that B yields 80 lbs (half of B’s weight) +
40 lbs (half of the weight B is carrying) = 120 lbs.

○ C is above E, so E carries half of C’s weight.
■ That is 80 lbs.

○ E also carries half of the weight C is carrying.
■ How much weight is C carrying?

● A is above C, so C carries half of A’s
weight.

○ That is 80 lbs. And half of that is
40 lbs.

○ In total, E is carrying 240 lbs.

Part 2: Human Pyramids
● How much weight is E carrying?

○ To save some work, we know from the previous example
that B yields 80 lbs (half of B’s weight) + 40 lbs (half of the
weight B is carrying) = 120 lbs.

○ C is above E, so E carries half of C’s weight.
■ That is 80 lbs.

○ E also carries half of the weight C is carrying.
■ How much weight is C carrying?

● A is above C, so C carries half of A’s weight.
○ That is 80 lbs. And half of that is 40 lbs.

○ In total, E is carrying 240 lbs.

● Despite the fact that D and E are on the same row,
E is carrying double the weight D is carrying!

Part 2: Human Pyramids
● How much weight is M carrying?

Part 2: Human Pyramids
● How much weight is M carrying?

Part 2: Human Pyramids
● How much weight is M carrying?
● Sorry I’m just kidding, we are not doing this

LOL...

Part 2: Human Pyramids
● How much weight is M carrying?
● Sorry I’m just kidding, we are not doing this

LOL...
● The point is, this problem fairly

computationally heavy after just several
rows.

Part 2: Human Pyramids
● Let’s get into the code!

Part 2: Human Pyramids
● Let’s get into the code!
● double weightOnBackOf(int row, int col, int

pyramidHeight);

Part 2: Human Pyramids
● Let’s get into the code!
● double weightOnBackOf(int row, int col, int

pyramidHeight);
● Coordinate system (row, col) →

Part 2: Human Pyramids
● Let’s get into the code!
● double weightOnBackOf(int row, int col, int

pyramidHeight);
● Coordinate system (row, col) →
● “pyramidHeight” refers to the number of

rows

Part 2: Human Pyramids
● Quiz time!

Part 2: Human Pyramids
● Quiz time!

Hey I’m back!

Part 2: Human Pyramids
● What is the function call to get the weight on

back of H?

Part 2: Human Pyramids
● What is the function call to get the weight on

back of H?
○ weightOnBackOf(3, 1, 5)

Part 2: Human Pyramids
● What is the function call to get the weight on

back of H?
○ weightOnBackOf(3, 1, 5)

● Which person is weightOnBackOf(4, 3, 5)
referring to?

Part 2: Human Pyramids
● What is the function call to get the weight on

back of H?
○ weightOnBackOf(3, 1, 5)

● Which person is weightOnBackOf(4, 3, 5)
referring to?

○ Person N

Part 2: Human Pyramids
● What is the function call to get the weight on

back of H?
○ weightOnBackOf(3, 1, 5)

● Which person is weightOnBackOf(4, 3, 5)
referring to?

○ Person N
● Which person is weightOnBackOf(2, 4, 5)

referring to?

Part 2: Human Pyramids
● What is the function call to get the weight on

back of H?
○ weightOnBackOf(3, 1, 5)

● Which person is weightOnBackOf(4, 3, 5)
referring to?

○ Person N
● Which person is weightOnBackOf(2, 4, 5)

referring to?
○ No one :(

Part 2: Human Pyramids
● What is the function call to get the weight on

back of H?
○ weightOnBackOf(3, 1, 5)

● Which person is weightOnBackOf(4, 3, 5)
referring to?

○ Person N
● Which person is weightOnBackOf(2, 4, 5)

referring to?
○ No one :(

● weightOnBackOf(6, 1, 5)?

Part 2: Human Pyramids
● What is the function call to get the weight on

back of H?
○ weightOnBackOf(3, 1, 5)

● Which person is weightOnBackOf(4, 3, 5)
referring to?

○ Person N
● Which person is weightOnBackOf(2, 4, 5)

referring to?
○ No one :(

● weightOnBackOf(6, 1, 5)?
○ No one :(

Part 2: Human Pyramids
● Some implementation thoughts:

Part 2: Human Pyramids
● Some implementation thoughts:

○ Throw an error for invalid function calls (think
through the possible cases thoroughly).

Part 2: Human Pyramids
● Some implementation thoughts:

○ Throw an error for invalid function calls (think
through the possible cases thoroughly).

○ The top person carries no weight.

Part 2: Human Pyramids
● Some implementation thoughts:

○ Throw an error for invalid function calls (think
through the possible cases thoroughly).

○ The top person carries no weight.
○ Some people are directly supporting two people,

some people are directly supporting one person.
How should you distinguish between the two
cases?

Part 2: Human Pyramids
● Some implementation thoughts:

○ Throw an error for invalid function calls (think
through the possible cases thoroughly).

○ The top person carries no weight.
○ Some people are directly supporting two people,

some people are directly supporting one person.
How should you distinguish between the two
cases?

○ Remember that the function returns a double!

Part 2: Human Pyramids
● Some implementation thoughts:

○ Throw an error for invalid function calls (think
through the possible cases thoroughly).

○ The top person carries no weight.
○ Some people are directly supporting two people,

some people are directly supporting one person.
How should you distinguish between the two
cases?

○ Remember that the function returns a double!
○ Test your solution before moving on!

Part 2: Human Pyramids
● Questions before we move on to part 2 of

part 2?

Part 2: Human Pyramids - Milestone 2
● Let’s examine a HUGE efficiency flaw in our

first implementation.

Part 2: Human Pyramids - Milestone 2
● Let’s examine a HUGE efficiency flaw in our

first implementation.
● Say we’re interested in finding out how

much weight M is carrying.

Part 2: Human Pyramids - Milestone 2
● Let’s examine a HUGE efficiency flaw in our

first implementation.
● Say we’re interested in finding out how

much weight M is carrying.
● How many times do we need to call the

function with respect to M?

Part 2: Human Pyramids - Milestone 2
● Let’s examine a HUGE efficiency flaw in our

first implementation.
● Say we’re interested in finding out how

much weight M is carrying.
● How many times do we need to call the

function with respect to M?
○ Just once

Part 2: Human Pyramids - Milestone 2
● Let’s examine a HUGE efficiency flaw in our

first implementation.
● Say we’re interested in finding out how

much weight M is carrying.
● How many times do we need to call the

function with respect to M?
○ Just once

● What about H?

Part 2: Human Pyramids - Milestone 2
● Let’s examine a HUGE efficiency flaw in our

first implementation.
● Say we’re interested in finding out how

much weight M is carrying.
● How many times do we need to call the

function with respect to M?
○ Just once

● What about H?
○ Once

Part 2: Human Pyramids - Milestone 2
● Let’s examine a HUGE efficiency flaw in our

first implementation.
● Say we’re interested in finding out how

much weight M is carrying.
● How many times do we need to call the

function with respect to M?
○ Just once

● What about H?
○ Once

● E?

Part 2: Human Pyramids - Milestone 2
● Let’s examine a HUGE efficiency flaw in our

first implementation.
● Say we’re interested in finding out how

much weight M is carrying.
● How many times do we need to call the

function with respect to M?
○ Just once

● What about H?
○ Once

● E?
○ Twice

Part 2: Human Pyramids - Milestone 2
● Let’s examine a HUGE efficiency flaw in our

first implementation.
● Say we’re interested in finding out how

much weight M is carrying.
● How many times do we need to call the

function with respect to M?
○ Just once

● What about H?
○ Once

● E?
○ Twice

● And A will be called 6 times!

Part 2: Human Pyramids - Milestone 2
● This actually resembles a Pascal’s Triangle

(off topic, just slightly)

Part 2: Human Pyramids - Milestone 2
● This actually resembles a Pascal’s Triangle

(off topic, just slightly)
● Let the number on a person denote how

many times this person needs to call A.

Part 2: Human Pyramids - Milestone 2
● This actually resembles a Pascal’s Triangle

(off topic, just slightly)
● Let the number on a person denote how

many times this person needs to call A.

Part 2: Human Pyramids - Milestone 2
● This actually resembles a Pascal’s Triangle

(off topic, just slightly)
● Let the number on a person denote how

many times this person needs to call A.

Part 2: Human Pyramids - Milestone 2
● This actually resembles a Pascal’s Triangle

(off topic, just slightly)
● Let the number on a person denote how

many times this person needs to call A.

Part 2: Human Pyramids - Milestone 2
● This actually resembles a Pascal’s Triangle

(off topic, just slightly)
● Let the number on a person denote how

many times this person needs to call A.

Part 2: Human Pyramids - Milestone 2
● This actually resembles a Pascal’s Triangle

(off topic, just slightly)
● Let the number on a person denote how

many times this person needs to call A.
● You are expecting the last row filled out,

but I’m out of animation budget :|

Part 2: Human Pyramids - Milestone 2
● Observation: As we get further into the

recursive stack, the more copies of the
SAME function calls we will be creating.

Part 2: Human Pyramids - Milestone 2
● Observation: As we get further into the

recursive stack, the more copies of the
SAME function calls we will be creating.

● Just the 10th row and we have surpassed
100 in the Pascal’s Triangle.

Part 2: Human Pyramids - Milestone 2
● Observation: As we get further into the

recursive stack, the more copies of the
SAME function calls we will be creating.

● Just the 10th row and we have surpassed
100 in the Pascal’s Triangle.

● 14th row and we have surmounted 1,000.

Part 2: Human Pyramids - Milestone 2
● Observation: As we get further into the

recursive stack, the more copies of the
SAME function calls we will be creating.

● Just the 10th row and we have surpassed
100 in the Pascal’s Triangle.

● 14th row and we have surmounted 1,000.
● 17th row > 10,000.

Part 2: Human Pyramids - Milestone 2
● Observation: As we get further into the

recursive stack, the more copies of the
SAME function calls we will be creating.

● Just the 10th row and we have surpassed
100 in the Pascal’s Triangle.

● 14th row and we have surmounted 1,000.
● 17th row > 10,000.
● Conclusion: This grows really really fast!

Part 2: Human Pyramids - Milestone 2
● We need a solution.

Part 2: Human Pyramids - Milestone 2
● We need a solution.

Part 2: Human Pyramids
● How much weight is E carrying?

○ To save some work, we know from the previous
example that B yields 80 lbs (half of B’s weight) +
40 lbs (half of the weight B is carrying) = 120 lbs.

Slide 48

Part 2: Human Pyramids
● How much weight is E carrying?

○ To save some work, we know from the previous
example that B yields 80 lbs (half of B’s weight) +
40 lbs (half of the weight B is carrying) = 120 lbs.

Slide 48

Part 2: Human Pyramids - Milestone 2
● Memoization: using an auxiliary table to

keep track of all the recursive calls that
have been made before and what value
was returned for each of them.

Part 2: Human Pyramids - Milestone 2
Standard Recursion:

Part 2: Human Pyramids - Milestone 2
With Memoization:

Part 2: Human Pyramids - Milestone 2
With Memoization:

Wrapper function

Part 2: Human Pyramids - Milestone 2
With Memoization:

Wrapper function

Utilizing the table if possible

Part 2: Human Pyramids - Milestone 2
With Memoization:

Wrapper function

Utilizing the table if possible

Updating the table after computation

Part 2: Human Pyramids - Milestone 2
● Note that there isn’t a variable of type

Table

Part 2: Human Pyramids - Milestone 2
● Note that there isn’t a variable of type

Table
○ Table is generally referring some data structure

we can use to store previous computations.

Part 2: Human Pyramids - Milestone 2
● Note that there isn’t a variable of type

Table
○ Table is generally referring some data structure

we can use to store previous computations.
○ Its type can differ from problem to problem.

Part 2: Human Pyramids - Milestone 2
● Note that there isn’t a variable of type

Table
○ Table is generally referring some data structure

we can use to store previous computations.
○ Its type can differ from problem to problem.

● Question to ask yourself: What should the
type of Table be such that:

Part 2: Human Pyramids - Milestone 2
● Note that there isn’t a variable of type

Table
○ Table is generally referring some data structure

we can use to store previous computations.
○ Its type can differ from problem to problem.

● Question to ask yourself: What should the
type of Table be such that:

○ It is easy and fast to look up necessary values.

Part 2: Human Pyramids - Milestone 2
● Note that there isn’t a variable of type

Table
○ Table is generally referring some data structure

we can use to store previous computations.
○ Its type can differ from problem to problem.

● Question to ask yourself: What should the
type of Table be such that:

○ It is easy and fast to look up necessary values.
○ Can be updated during program execution.

Part 2: Human Pyramids - Milestone 2
● Note that there isn’t a variable of type

Table
○ Table is generally referring some data structure

we can use to store previous computations.
○ Its type can differ from problem to problem.

● Question to ask yourself: What should the
type of Table be such that:

○ It is easy and fast to look up necessary values.
○ Can be updated during program execution.
○ Is efficient and elegant.

Questions about Part 2?

Context Switch Time!

Definition: A context switch occurs when a code routine is “switched
off” the CPU so that another routine can begin / resume.

Part 3: What Are YOU Doing?
● Have you ever considered an iconic phrase like:

Part 3: What Are YOU Doing?
● Have you ever considered an iconic phrase like:

“To be or not to be”

Part 3: What Are YOU Doing?
● Have you ever considered an iconic phrase like:

and wondered what it would be like to capitalize every possible subset of
the words?

“To be or not to be”

Part 3: What Are YOU Doing?
● Have you ever considered an iconic phrase like:

and wondered what it would be like to capitalize every possible subset of
the words?

Me neither!

“To be or not to be”

Part 3: What Are YOU Doing?
● Nonetheless, it’s your job to implement the following function:

Part 3: What Are YOU Doing?
● Nonetheless, it’s your job to implement the following function:

● Given an arbitrary sentence, you’ll need to return all possible
combinations of emphases like so:

Part 3: What Are YOU Doing?
● Nonetheless, it’s your job to implement the following function:

● Given an arbitrary sentence, you’ll need to return all possible
combinations of emphases like so:

What are you doing?

Part 3: What Are YOU Doing?
● Let’s think about this critically for a second:

Part 3: What Are YOU Doing?
● Let’s think about this critically for a second:

● It looks like at the upper left, all tokens are lowercase, and on the bottom right, all
tokens are uppercase! Hmm, does this look like patterns you’ve seen before?

Part 3: What Are YOU Doing?
● Granted, you might sometimes have stranger-looking questions like this:

Part 3: What Are YOU Doing?
● Granted, you might sometimes have stranger-looking questions like this:

● We’ve provided you with the following function to help tokenize the given
sentence.

Part 3: What Are YOU Doing?
● Granted, you might sometimes have stranger-looking questions like this:

● We’ve provided you with the following function to help tokenize the given
sentence.

That can turn the above sentence into the following vector:

Part 3: What Are YOU Doing?

● The good news is, you can determine whether an individual token is a
word or not by checking whether the first character is alphabetical!

Part 3: What Are YOU Doing?

● The good news is, you can determine whether an individual token is a
word or not by checking whether the first character is alphabetical!

○ That might look something like this: isalpha(tokenizedString[someIndex][0])

Part 3: What Are YOU Doing?

● The good news is, you can determine whether an individual token is a
word or not by checking whether the first character is alphabetical!

○ That might look something like this: isalpha(tokenizedString[someIndex][0])
○ This way you can avoid trying to capitalize / lowercase strings that aren’t words! To repeat,

you should ignore non-words!

Part 3: What Are YOU Doing?

● Some notes about this problem:

Part 3: What Are YOU Doing?

● Some notes about this problem:

○ Think long and hard about what kind of recursion you’re doing here. Are you dealing with
subsets? Permutations? Combinations? Something else? Be sure you can answer this
question before writing code.

Part 3: What Are YOU Doing?

● Some notes about this problem:

○ Think long and hard about what kind of recursion you’re doing here. Are you dealing with
subsets? Permutations? Combinations? Something else? Be sure you can answer this
question before writing code.

○ Helper functions are encouraged to complete this part of the assignment!

Part 3: What Are YOU Doing?

● Some notes about this problem:

○ Think long and hard about what kind of recursion you’re doing here. Are you dealing with
subsets? Permutations? Combinations? Something else? Be sure you can answer this
question before writing code.

○ Helper functions are encouraged to complete this part of the assignment!
○ You should ignore the original casings of words, but be aware that you must BOTH

toUpperCase() AND toLowerCase() words in the sentence! Students sometimes think you
only need to use toUpperCase()

Part 3: What Are YOU Doing?
 ● Some notes about this problem:

○ Think long and hard about what kind of recursion you’re doing here. Are you dealing with
subsets? Permutations? Combinations? Something else? Be sure you can answer this
question before writing code.

○ Helper functions are encouraged to complete this part of the assignment!
○ You should ignore the original casings of words, but be aware that you must BOTH

toUpperCase() AND toLowerCase() words in the sentence! Students sometimes think you
only need to use toUpperCase()

○ You shouldn’t need to call the tokenize() function more than once to complete this
function!

Part 3: What Are YOU Doing?
 ● Some notes about this problem:

○ Think long and hard about what kind of recursion you’re doing here. Are you dealing with
subsets? Permutations? Combinations? Something else? Be sure you can answer this
question before writing code.

○ Helper functions are encouraged to complete this part of the assignment!
○ You should ignore the original casings of words, but be aware that you must BOTH

toUpperCase() AND toLowerCase() words in the sentence! Students sometimes think you
only need to use toUpperCase()

○ You shouldn’t need to call the tokenize() function more than once to complete this
function!

○ Here’s how to properly use toUpperCase() :

string str = “hello there!”
str = toUpperCase(str);

Part 3: What Are YOU Doing?
 ● Some notes about this problem:

○ Think long and hard about what kind of recursion you’re doing here. Are you dealing with
subsets? Permutations? Combinations? Something else? Be sure you can answer this
question before writing code.

○ Helper functions are encouraged to complete this part of the assignment!
○ You should ignore the original casings of words, but be aware that you must BOTH

toUpperCase() AND toLowerCase() words in the sentence! Students sometimes think you
only need to use toUpperCase()

○ You shouldn’t need to call the tokenize() function more than once to complete this
function!

○ Here’s how to properly use toUpperCase() :

string str = “hello there!”
str = toUpperCase(str); Any questions?

Part 4: Shift Scheduling
● This is it! You’ve made it to the last part of the assignment!

Part 4: Shift Scheduling
● This is it! You’ve made it to the last part of the assignment!
● In this final challenge, you’ll be tasked with creating a schedule for a

worker that optimizes profit.

Part 4: Shift Scheduling
● This is it! You’ve made it to the last part of the assignment!
● In this final challenge, you’ll be tasked with creating a schedule for a

worker that optimizes profit.
○ Wait a minute, does this sound ethical?

Part 4: Shift Scheduling
● This is it! You’ve made it to the last part of the assignment!
● In this final challenge, you’ll be tasked with creating a schedule for a

worker that optimizes profit.
○ Wait a minute, does this sound ethical?

Part 4: Shift Scheduling
● Optimizing a shift schedule for profit is absolutely not ethical! Always be

conscientious about what you’re optimizing.

Part 4: Shift Scheduling
● Optimizing a shift schedule for profit is absolutely not ethical! Always be

conscientious about what you’re optimizing.
● Despite this… we’re going to ask you to do just this in Shift Scheduling

Part 4: Shift Scheduling
● Here’s what you’ll be implementing:

Part 4: Shift Scheduling
● Here’s what you’ll be implementing:

● Your job is to return the collection of shift’s that maximizes profit given
a full collection of shifts and a maximum number of hours an individual
can work.

Part 4: Shift Scheduling
● Here’s what you’ll be implementing:

● Your job is to return the collection of shift’s that maximizes profit given
a full collection of shifts and a maximum number of hours an individual
can work.

● Here are a few functions we’ve written for you that use shift:

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

○ Take some shift (any you’d like!) from the collection of given shifts.

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

○ Take some shift (any you’d like!) from the collection of given shifts.

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

○ Take some shift (any you’d like!) from the collection of given shifts.
○ Determine whether the employee can actually take this shift:

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

○ Take some shift (any you’d like!) from the collection of given shifts.
○ Determine whether the employee can actually take this shift:

■ Does this shift’s length put the worker over the max number of hours they’re
allowed to work?

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

○ Take some shift (any you’d like!) from the collection of given shifts.
○ Determine whether the employee can actually take this shift:

■ Does this shift’s length put the worker over the max number of hours they’re
allowed to work?

■ Does this shift overlap with a shift the worker is already working?

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

○ Take some shift (any you’d like!) from the collection of given shifts.
○ Determine whether the employee can actually take this shift:

■ Does this shift’s length put the worker over the max number of hours they’re
allowed to work?

■ Does this shift overlap with a shift the worker is already working?
○ If this shift is invalid for either reason, discard it, and repeat the process on a new shift

(does this sound self-similar?)

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

○ Take some shift (any you’d like!) from the collection of given shifts.
○ Determine whether the employee can actually take this shift:

■ Does this shift’s length put the worker over the max number of hours they’re allowed to
work?

■ Does this shift overlap with a shift the worker is already working?
○ If this shift is invalid for either reason, discard it, and repeat the process on a new shift (does this

sound self-similar?)
○ If the shift is valid, you have two options:

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

○ Take some shift (any you’d like!) from the collection of given shifts.
○ Determine whether the employee can actually take this shift:

■ Does this shift’s length put the worker over the max number of hours they’re allowed to
work?

■ Does this shift overlap with a shift the worker is already working?
○ If this shift is invalid for either reason, discard it, and repeat the process on a new shift (does this

sound self-similar?)
○ If the shift is valid, you have two options:

■ See what happens if you include this shift, and continue for a new shift

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

○ Take some shift (any you’d like!) from the collection of given shifts.
○ Determine whether the employee can actually take this shift:

■ Does this shift’s length put the worker over the max number of hours they’re allowed to work?
■ Does this shift overlap with a shift the worker is already working?

○ If this shift is invalid for either reason, discard it, and repeat the process on a new shift (does this sound
self-similar?)

○ If the shift is valid, you have two options:
■ See what happens if you include this shift, and continue for a new shift
■ See what happens if you exclude this shift, and continue for a new shift

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

○ Take some shift (any you’d like!) from the collection of given shifts.
○ Determine whether the employee can actually take this shift:

■ Does this shift’s length put the worker over the max number of hours they’re allowed to work?
■ Does this shift overlap with a shift the worker is already working?

○ If this shift is invalid for either reason, discard it, and repeat the process on a new shift (does this sound
self-similar?)

○ If the shift is valid, you have two options:
■ See what happens if you include this shift, and continue for a new shift
■ See what happens if you exclude this shift, and continue for a new shift

○ We want you to try both, and return the collection of shifts that has the greater aggregate value.

Part 4: Shift Scheduling
● Here’s how we want you to approach this problem:

○ Take some shift (any you’d like!) from the collection of given shifts.
○ Determine whether the employee can actually take this shift:

■ Does this shift’s length put the worker over the max number of hours they’re allowed to work?
■ Does this shift overlap with a shift the worker is already working?

○ If this shift is invalid for either reason, discard it, and repeat the process on a new shift (does this sound
self-similar?)

○ If the shift is valid, you have two options:
■ See what happens if you include this shift, and continue for a new shift
■ See what happens if you exclude this shift, and continue for a new shift

○ We want you to try both, and return the collection of shifts that has the greater aggregate value.

Part 4: Shift Scheduling
● Here’s how we DON’T want you to approach this problem:

Part 4: Shift Scheduling
● Here’s how we DON’T want you to approach this problem:

○ Recursively enumerate ALL possible combinations of shifts, then loop through the
conglomerate and find the most valuable schedule that is feasible

Part 4: Shift Scheduling
● Here’s how we DON’T want you to approach this problem:

○ Recursively enumerate ALL possible combinations of shifts, then loop through the
conglomerate and find the most valuable schedule that is feasible

○ Why is this such a bad idea?

Part 4: Shift Scheduling
● Here are a few tips about this problem:

Part 4: Shift Scheduling
● Here are a few tips about this problem:

○ Follow the step-by-step approach we’ve given you here/on the handout!

Part 4: Shift Scheduling
● Here are a few tips about this problem:

○ Follow the step-by-step approach we’ve given you here/on the handout!
○ You shouldn’t actually need to look at the internals of the shift struct! Simply use the

three functions we’ve provided for you :)

Part 4: Shift Scheduling
● Here are a few tips about this problem:

○ Follow the step-by-step approach we’ve given you here/on the handout!
○ You shouldn’t actually need to look at the internals of the shift struct! Simply use the

three functions we’ve provided for you :)
○ An optimized collection of shifts might not use up all of the hours of a worker!

Part 4: Shift Scheduling
● Here are a few tips about this problem:

○ Follow the step-by-step approach we’ve given you here/on the handout!
○ You shouldn’t actually need to look at the internals of the shift struct! Simply use the

three functions we’ve provided for you :)
○ An optimized collection of shifts might not use up all of the hours of a worker!
○ Workers can have a maxHours value of 0, but you should raise an error() if that value is

ever negative!

Part 4: Shift Scheduling
● Here are a few tips about this problem:

○ Follow the step-by-step approach we’ve given you here/on the handout!
○ You shouldn’t actually need to look at the internals of the shift struct! Simply use the

three functions we’ve provided for you :)
○ An optimized collection of shifts might not use up all of the hours of a worker!
○ Workers can have a maxHours value of 0, but you should raise an error() if that value is

ever negative!
○ Remember to think long and hard about the implications of your work -- take a look at

some of the schedules your algorithms produce -- you might be optimizing profit, but at
what cost?

Part 4: Shift Scheduling
● Here are a few tips about this problem:

○ Follow the step-by-step approach we’ve given you here/on the handout!
○ You shouldn’t actually need to look at the internals of the shift struct! Simply use the

three functions we’ve provided for you :)
○ An optimized collection of shifts might not use up all of the hours of a worker!
○ Workers can have a maxHours value of 0, but you should raise an error() if that value is

ever negative!
○ Remember to think long and hard about the implications of your work -- take a look at

some of the schedules your algorithms produce -- you might be optimizing profit, but at
what cost?

○ When making your recursive calls, ensure that every variable is being updated correctly!
Ensure you can justify each modification you make to your parameters.

Any questions about part 4?
I’d recommend taking a look through Jimmy Wu’s article “Optimize What?” It’s
an eye-opening piece about how a-seemingly innocuous CS education can be
a very dangerous thing for society.

Congrats!
This was a big assignment, but we believe in you! Remember that you have
lots of support!

